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Motivation

The beginning phases of system development and conceptual design require careful
consideration, as these decisions will have significant influence on system lifetime
performance and are usually made with incomplete system knowledge. Decision makers
may improve their capacity to discriminate between system concepts and design choices,
as well as hedge against lifecycle uncertainties by considering a system’s “ilities” such as
changeability, scalability, and survivability. These ilities may enable systems to respond to
shifts in contexts and needs in order to ensure system functionality and adequate
performance over time.

Goal and Approach

Characterizing system changes through empirical examples may inform research on how
system ilities relate to each other across various system and domain types. This research
attempts to analyze system change mechanisms that allow system changes to occur, and
propose a framework for allowing system designers to map vague, yet desirable, ilities to
prescriptive system design principles.

Change - llity Framework
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llities as Outcomes

This research aims to find a better means of determining which ilities are present in
different system changes and map those ilities to various design principles. When
stakeholders identify an ility as a desired property of a design, the ultimate goal of added
value to the system from having this ility represents one end of this relationship.
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Change Database

Capturing system changes
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categorical
information based on
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The Change Option

Research concentrates on outcomes of system changes in
various scenarios. The change option characterizes system
change mechanisms and associated path enablers, bringing
the system from State 1 to State 2.
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Next Steps

Categorical Cluster Analysis

As the database grows in size, becoming more
statistically viable, categorical cluster analysis will be
made on the system changes. Expected clusters will
give insight into how various ilities interrelate. Itis
possible that new ilities may be identified, or
common ilities may be found. Since the system
change itself is the more important for designers,
this research may find that the label of “ilities” are
just subjective representations of desirable system
properties.

Intended Contributions
Maintaining system performance in the presence of uncertainties in design and
operating environments is both challenging and increasingly essential as system
lifecycles grow longer. Ongoing research that investigates empirical examples of
system changes, in order to characterize these changes, helps to develop a
categorization scheme for framing and clarifying design approaches for proactively
creating ilities in a system, and gives more insight into how these ilities may trade-

off or inter-relate.

For more information, please visit: http://seari.mit.edu




