

2011 SEAri Annual Research Summit

Overview and Motivations

Dr. Donna H. Rhodes

October 21, 2011 Cambridge, MA Massachusetts Institute of Technology

Engineering Systems Division

Brief Overview of SEAri

MIT ESD

Systems Engineering Advancement Research Initiative (SEAri)

SEAri Group Research Mission

Advance the <u>theories, methods, and effective practice</u> of systems engineering applied to complex <u>socio-technical systems</u> through <u>collaborative research</u>

Socio-Technical Decision Making Designing for Value Robustness Systems Engineering Economics Systems Engineering in the Enterprise

2010/2011 Sponsors:

US Air Force, Singapore Defense Sciences & Technology Agency, DARPA, MIT Portugal Program, selected US Government Agencies

292 Main Street

E38-575

Selected Areas of Research and Research Methods

Five Aspects of Complex Systems dynamic strategies consider context, time, perception shifts

STRUCTURAL	Addressed via "state of the practice" systems architecting and model-based			
BEHAVIORAL	systems engineering			
CONTEXTUAL	Emerging "state of art" Epoch Modeling Multi-Epoch Analysis			
TEMPORAL	Epoch-Era Analysis Multi-Dimensional Tradespace Exploration Multi-Stakeholder Negotiations			
PERCEPTUAL	Comprehension of Complex Datasets Cognition-based studies of Decision Makers and more			

Achieving Impact

- New constructs, methods, and frameworks
 - Example: Dynamic MATE, Epoch-Era Analysis
- Transition of research to practice
 - Use of methods at several organizations
- Publications conference/journal papers, guidebooks
- Integrate knowledge into curriculum
 - Academic and professional education
- Access to knowledge assets via website
 - Direct access to softcopy documents
- Promote dialogue across government, industry, and academic units
 - SEAri Summit, technical exchange meetings, workshops
- Attract top students as impact-oriented researchers

SEAri Graduates in the Workforce Academic Year 2009-2011

- US Air Force
- US Marines
- US Coast Guard
- Consultancy (defense, transportation)
- George Washington University
- Fraunhofer Institute for Sustainable Energy Systems
- JPL
- Lincoln Labs
- MIT Postdoc
- NGA
- Singapore DSTA

SEAri provides students with a collaborative learning environment focused on real-world problems and collaborating with experts in government and industry ...thereby preparing them to contribute to significant systems challenges

• West Point Military Academy

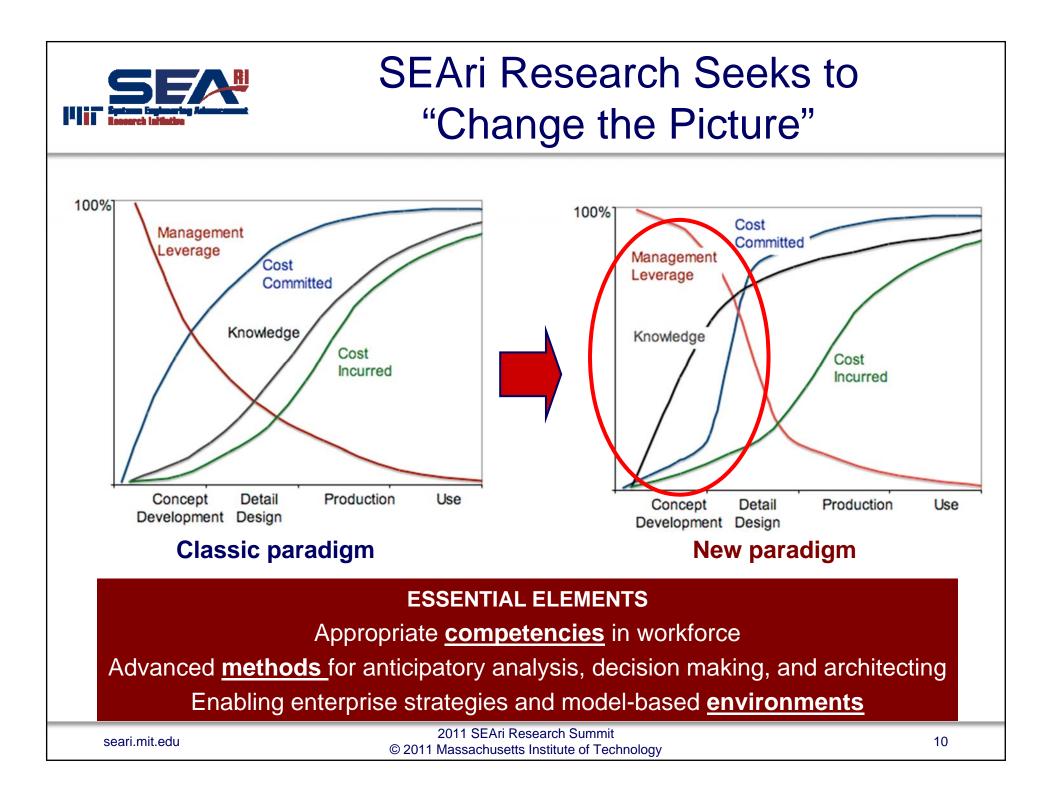
Motivations

Research Landscape

Systems of Systems

System of systems is a collection of task-oriented or dedicated systems that pool their resources and capabilities together to obtain a new, more complex, 'meta-system' which offers more functionality and performance than simply the sum of the constituent systems

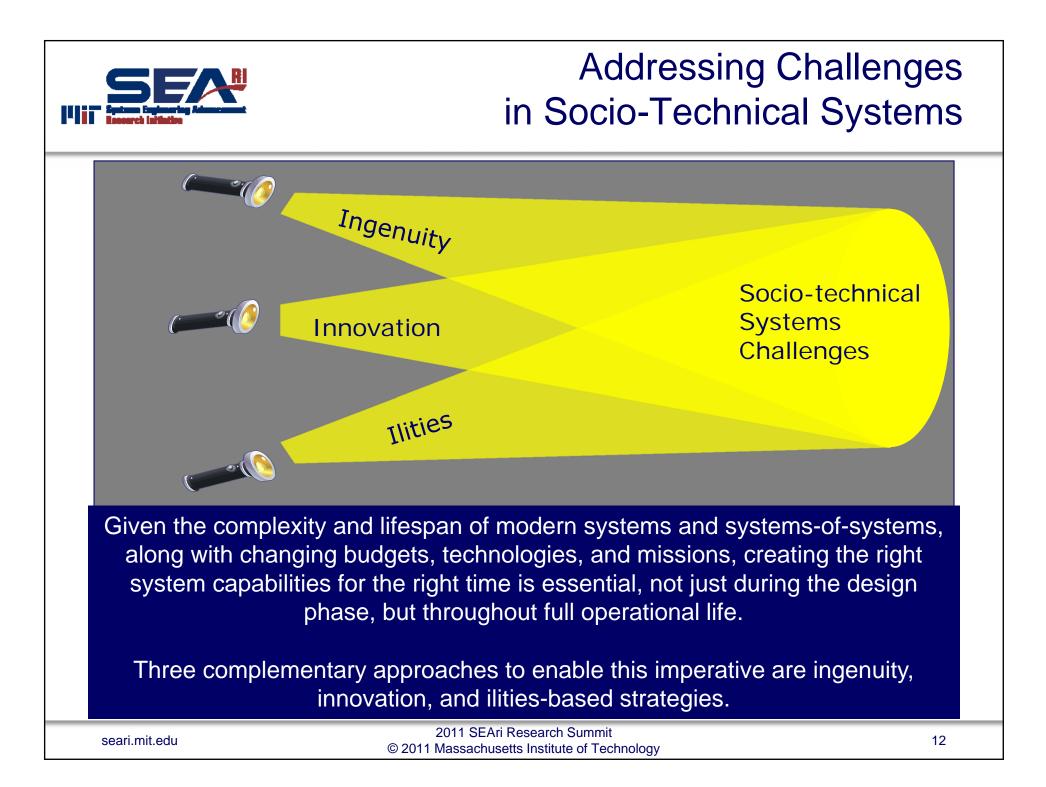
Entanglement of Systems and Enterprises


The understanding of the organizational and technical interactions in our systems, emphatically including the human beings who are a part of them, is the present-day frontier of both engineering education and practice.

Dr. Michael D. Griffin

Dynamic Global Environment

• The engineering environment of this century involves collaboration across regions and nations, and coping with changes in policies, resources, markets, technologies, economies, and stakeholder demographics


Anticipatory Capacity

MINDSET	METHODS	ENVIRONMENT		
 Ability to think deeply about 'systems in context' Enhance ability to think about 'systems in time' Use <i>situational leadership</i> to make decisions at multiple system levels 	 Perform dynamic tradespace exploration Model-based approach to derive alternative futures Apply methods at varying levels of fidelity 	Computing power/toolsets to enact methods Support multi-stakeholder negotiations in tradespace exploration Enable comprehension of complex data sets		
SPASE AIR GROUND Hetwork Centric GROUND	Select X-Ver ■ID Select X-Ver 0.8 Select X-Ver 0.8 Color By: 0.0 Select X-Ver 0.2 Datation (rss) 0.2 Select X-Ver 0.2 Datation (rss) 0.2 Toxico pret State 0.1 Toxico pret State 0.1			

Rhodes, D.H. and Ross, A.M., "Anticipatory Capacity: Leveraging Model-Based Approaches to Design Systems for Dynamic Futures," 2nd Annual Conference on Model-based Systems, Haifa, IL, March 2009

sea	rı.	m	t 🛆	du
300			ι.σ	uu

2011 SEAri Research Summit © 2011 Massachusetts Institute of Technology

Ingenuity

Clever inductive and deductive strategies applied to solve a problem

Innovation

Creation of better or more effective products, technologies, services or processes that are accepted by markets, governments, and society

llities

System properties describing some essential quality of a system that goes above and beyond typical cost, schedule, and performance expectations for the system development and operation

Ingenuity - Innovation - Ilities Focus Areas of Our Research

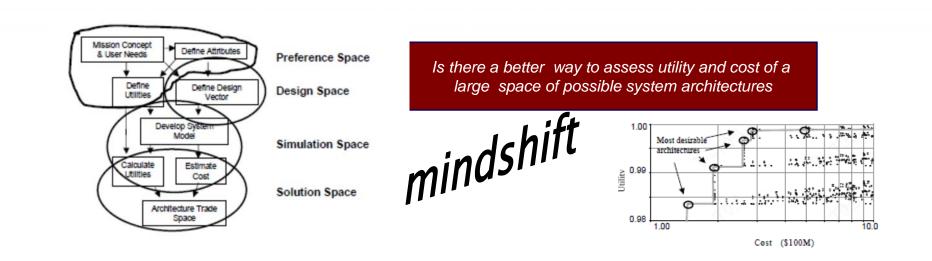
Ingenuity - Innovation - Ilities As Focus Areas of Our Research

Ingenuity

• What factors and conditions encourage ingenuity in individuals, teams, and enterprises?

Innovation

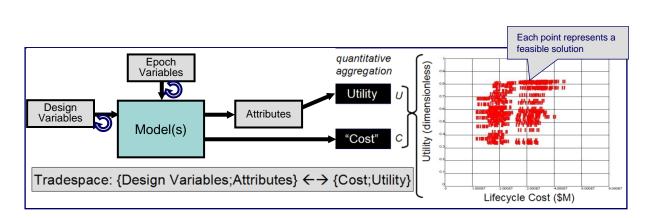
• What are effective pathways for innovation in different types of organizations?


llities

• Can the ilities be more precisely defined and measured, and incorporated into early trade-off decisions?

Ingenuity - Innovation - Ilities Influence in Our Research

Basic Research Phase Ingenuity in Academic Research

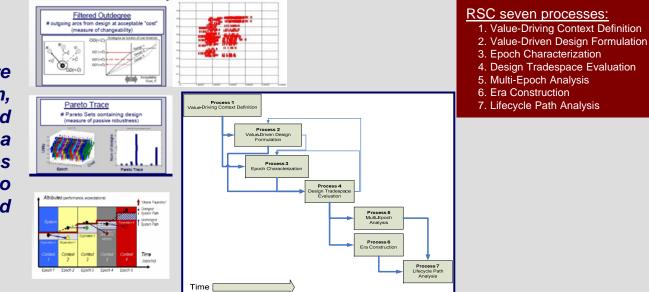


Ingenuity

Is there a clearly identified and scoped problem for which there are promising fundamental concepts and constructs that may lead to a new method?

Method Development Innovation in Academic Research

Mission Name	Purpose	Configuration	Analyses Used	References
Techsat 21	Moving ground target detection	Constallation of identical vehicles	GINA; MMDOSA, uncertainty analysis	93, 55
Terrestrial Planet Finder (TPP)	Search for Earth-like planets in other solar systems	l large, or 4 formation- flying vehicles	GENA; MEMDOSA	70, 124
Broadband	High Bandwidth Communication	LEO, MEO or GEO constellations	GINA: MMDOSA; uncertainty analysis	93, 55
Terrestrial Observer System A (A-TOS)	Three in-sits ionospheric measurements	Swamn of identical vehicles	Modified GDVA with utilities; uncertainty analysis	93, 92, 91
B-TOS	Topside sounding of innosphere and other missions	Summa with central mother and usuall drugitures	MATE with MAU; policy impact malyuis	54,94
C-TOS	Design vahicles for mission similar to B-TOS	Same as B-TOS	ICE with virtual co- location, risk chair	3
X-TOS	In-situ ionospheric measurements	1 or 2 independent vehicles	MATE-CON	14
Space Tug	Inter-orbit mass mover	Single or multiple vehicle	Simplified MATE- CON	57, 122
Small Diameter Bomb	Staad-off weapon	Single	MATE-CON with design evolution	Derieth Thesis
Space-Based Rader	Orbital surveillance and tracking	Constellation	MATE-CON with design evolution	65, Robert Thesis
Generic Istunch customer base	Exercise launch policy model	Many vehicles and functions	Launch policy model	163
Actual launch vahicle histories	Provide data for Bayesian risk model	History of Isuach success/failure	Bayesian risk model	4
Generic satellite program	Exercise management risk model	One vahicle	SAM management risk model	139



Innovation

Has the method been sufficiently defined and elaborated as demonstrated by application in multiple cases?

Multi-Method Synthesis Innovation in Academic Research

Using Multi-Attribute Tradespace Exploration, Epoch-Era Analysis, and other approaches, a coherent set of processes were developed into the RSC method

Innovation (combinatory)

Can multiple research outcomes be combined (including with existing application practice/techniques) into a comprehensive new approach?

seari.mit.edu

Real-world Application Phase **Ilities in Academic Research**

llities

Has the method been developed in consideration of its reliability, adaptability, evolvability, transferability, affordability....?

2011 SEAri Research Summit © 2011 Massachusetts Institute of Technology