

Survivability Design Principles for Enhanced Concept Generation and Evaluation

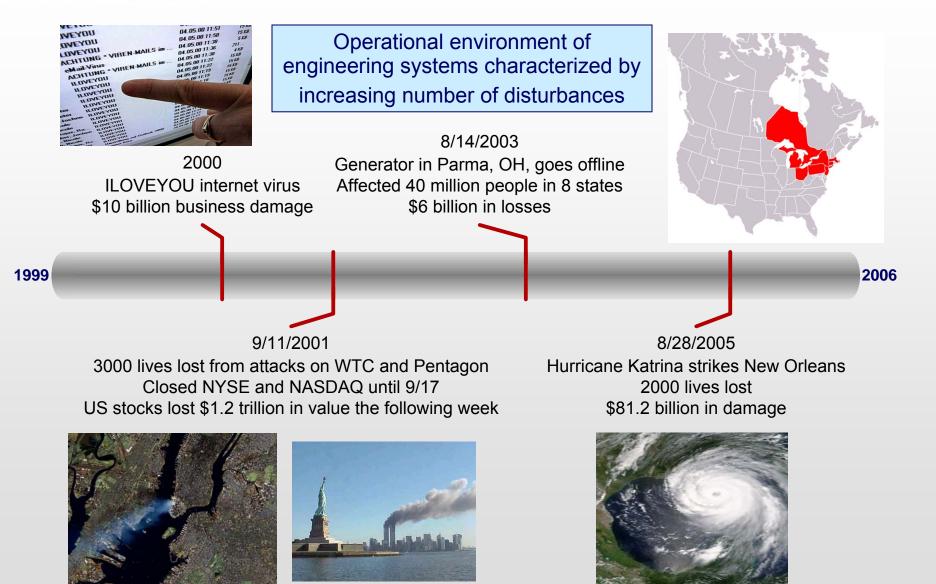
19th INCOSE Symposium Suntec City, Singapore 22 July 2009

Matthew G. Richards, Ph.D., Research Assistant, Engineering Systems Division

Donna H. Rhodes, Ph.D., Senior Lecturer, Engineering Systems Division Adam M. Ross, Ph.D., Research Scientist, Engineering Systems Division

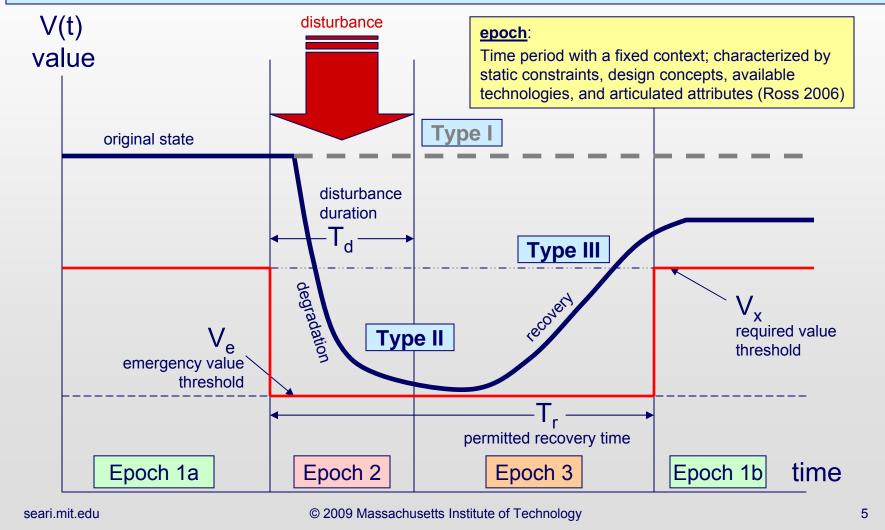
Daniel E. Hastings, Ph.D., Professor, Aeronautics and Astronautics & Engineering Systems

Massachusetts Institute of Technology


- Introduction
 - Definition of Survivability
 - Survivability Design Principles
- Methodological Overview
 - Multi-Attribute Tradespace Exploration (MATE) for Survivability
 - Case Application: Satellite Radar
- Synthesis

Introduction

Recent Events



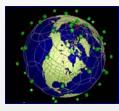
© 2009 Massachusetts Institute of Technology

Definition of Survivability

<u>Ability of a system to minimize the impact of finite-duration disturbances on value delivery</u> through (I) the reduction of the likelihood or magnitude of a disturbance, (II) the satisfaction of a minimally acceptable level of value delivery during and after a disturbance, and/or (III) a timely recovery

Empirical Generation of Survivability Design Principles

- 1. Deduce initial design principles from system-disturbance framework, exploratory interviews, and literature (12 design principles)
- 2. Select operational systems with survivability requirements



A-10A "Warthog"

UH-60A Blackhawk

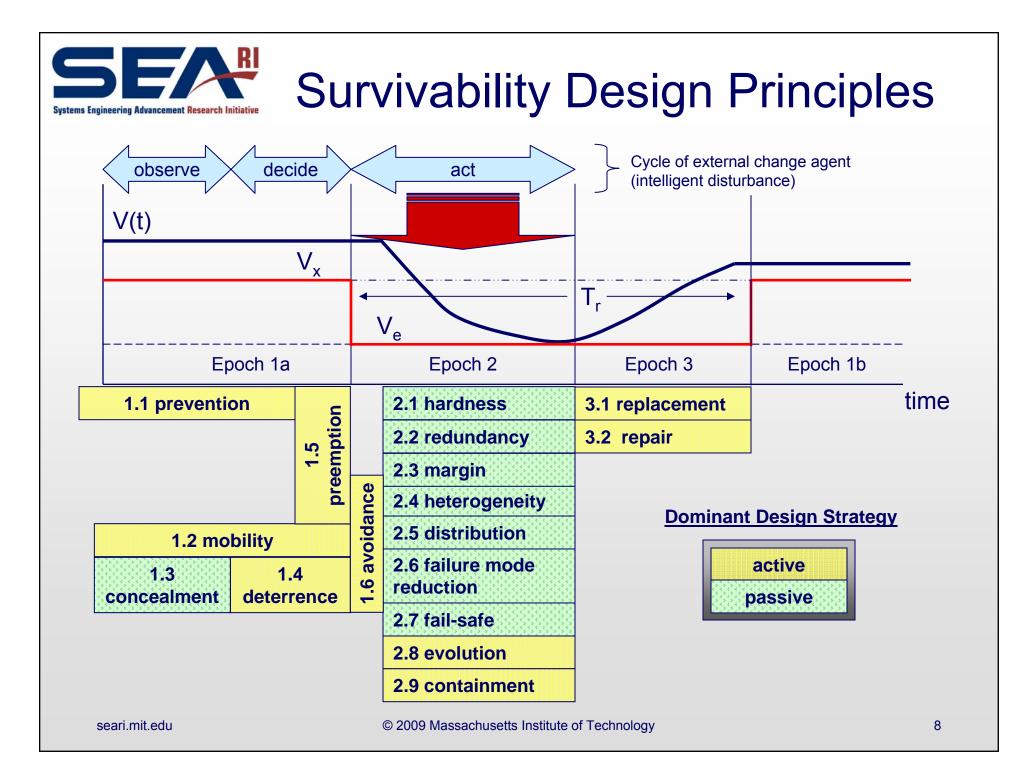
F-16C Fighting Falcon

Iridium Network

3. Trace design specifications of systems to design principles

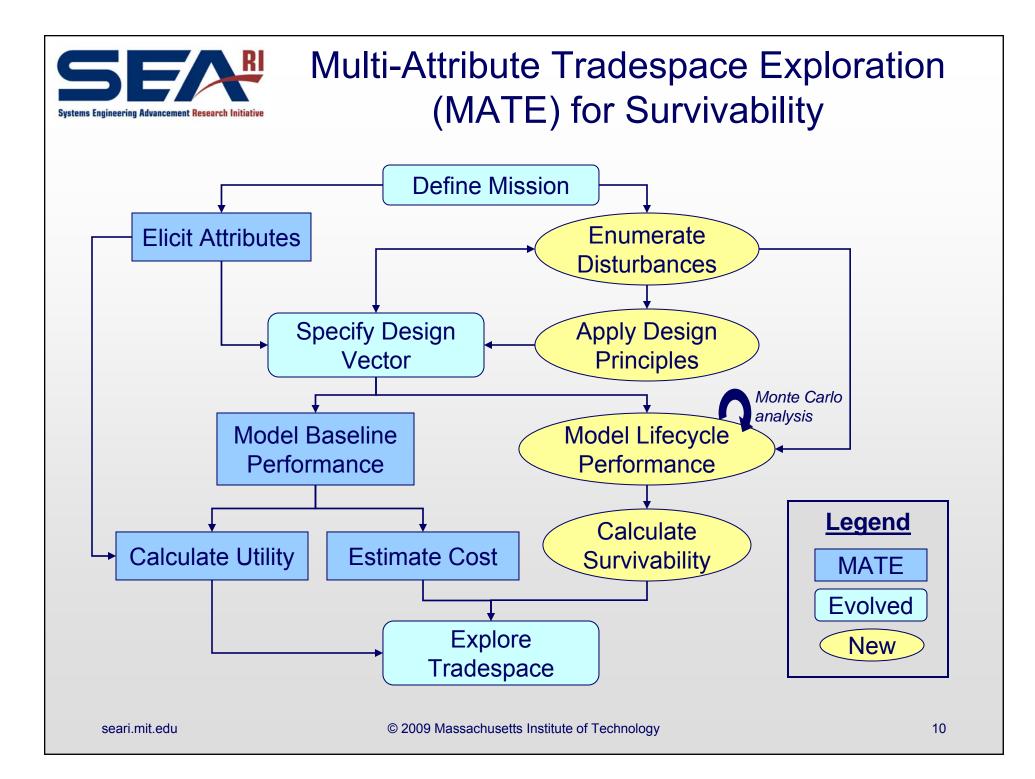
		Design Principles											
				Ту	be I			Type II				Тур	e III
A-10A: Sample Survivability Features		prevention	mobility	concealment	deterrence	preemption	avoidance	hardness	evolution	redundancy	diversity	replacement	repair
ē	redundant primary structure									Х			
t I	dual vertical stabilizers to shield heat exhaust			Х							ma	rgin	
Ĭ	long low-set wings (flight possible even if missing 1/2 wing)									Х			
str	interchangeable engines, landing hear, and vertical stabilizers												Х

4. Revise set to reflect empirical observation (17 design principles)


Survivability Design Principles

¢

Systems Engineering Advancement Research Initiative


RI

		Type I (Reduce Susceptibility)						
1.1	prevention	suppression of a future or potential future disturbance						
1.2	mobility	relocation to avoid detection by an external change agent						
1.3	concealment	reduction of the visibility of a system from an external change agent						
1.4	deterrence	dissuasion of a rational external change agent from committing a disturbance						
1.5	preemption	suppression of an imminent disturbance						
1.6	avoidance	maneuverability away from an ongoing disturbance						
	Type II (Reduce Vulnerability)							
2.1	hardness	resistance of a system to deformation						
2.2	redundancy	duplication of critical system functions to increase reliability						
2.3	margin	allowance of extra capability for maintaining value delivery despite losses						
2.4	heterogeneity	variation in system elements to mitigate homogeneous disturbances						
2.5	distribution	separation of critical system elements to mitigate local disturbances						
2.6	failure mode reduction	elimination of system hazards through intrinsic design: substitution, simplification, decoupling, and reduction of hazardous materials						
2.7	fail-safe	prevention or delay of degradation via physics of incipient failure						
2.8	evolution	alteration of system elements to reduce disturbance effectiveness						
2.9	containment	isolation or minimization of the propagation of failure						
		Type III (Enhance Resilience)						
3.1	replacement	substitution of system elements to improve value delivery						
3.2	repair	restoration of system to improve value delivery						

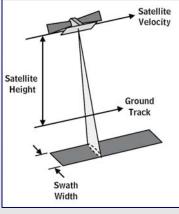
Methodological Overview

Phases of MATE for Survivability

- 1. Elicit Value Proposition Identify mission statement and quantify decisionmaker needs during nominal and emergency states.
- 2. Generate Concepts Formulate concepts that address decision-maker needs.
- 3. Characterize Disturbance Environment Develop concept-neutral models of disturbances in operational environment of proposed systems.
- **4. Apply Survivability Principles** Incorporate susceptibility reduction, vulnerability reduction, and resilience enhancement strategies into design vector.
- 5. Model Baseline System Performance Model and simulate cost and performance of design alternatives to gain an understanding of how decision-maker needs are met in a nominal operational environment.
- 6. Model Impact of Disturbances on Lifecycle Performance Model and simulate performance of design alternatives across a representative sample of disturbance encounters to gain an understanding of how decision-maker needs are met in perturbed environments.
- 7. Apply Survivability Metrics Compute time-weighted utility loss and threshold availability for each design alternative as summary statistics for system performance across representative operational lives.
- 8. Explore Tradespace Perform integrated cost, utility, and survivability trades across design space to identify promising alternatives for more detailed analysis.

seari.mit.edu


Case Application: Satellite Radar


Critical issue in national security space

- Unique all-weather surveillance capability
- Opportunity for impact given ongoing studies
- Rich multi-dimensional tradespace

Unit-of-analysis: SR architecture

- Radar payload
- Constellation of satellites
- Communications network

(CBO 2007)

Case Application Goal

To assess potential **satellite radar** architectures for providing the United States Military a global, all-weather, on-demand capability to **track moving ground targets**; supporting tactical military operations; maximizing costeffectiveness; and **surviving disturbances** in the natural space environment.

Systems Engineering Advancement Research Initial

Phase 2: Generate Concepts

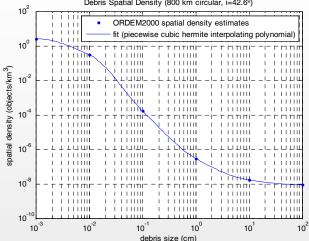
			ATTRIBUTES															
	Design Value M	lanning						issio	on					Pr	ograr	nmat		
	Design Value M				Trac	king)			In	nagi	ng		Сс	ost	Sche	edule	
	Matrix establishes traceability between <u>value-</u> <u>space</u> and <u>design-space</u>		num Target RCS	Detectable Velocity	ber of Target Boxes	Target Acquisition Time	et Track Life	Tracking Latency	Resolution (Proxy)	Targets per Pass	Field of Regard	Revisit Frequency	Imaging Latency	Baseline Cost	al Costs (Era)	line Schedule	al Schedule (Era)	Total Impact
	Variable Name	Definition Range	Minimum	Min.	Number		Target [.]	Track	Reso	Targe	Field	Revis	Imag	Base	Actual	Baseline	Actual	-
	Peak Transmit Power	1.5 10 20 [KW]	9	9	9	3	1	1	9	9	9	0	1	9	9	9	9	96
	Radar Bandwidth	.5 1 2 [GHz]	9	9	3	3	1	1	9	9	9	0	1	3	3	3	3	66
s	Radar Frequency	X UHF	9	9	3	3	1	1	9	9	9	0	1	3	3	3	3	66
Ш	Physical Antenna Area	10 40 100 200 [m^2]	9	9	9	3	1	1	9	9	9	1	1	9	9	9	9	97
ABL	Receiver Sats per Tx Sat	012345	9	9	3	3	1	1	9	3	3	1	1	9	9	9	9	79
RI/	Antenna Type	Mechanical vs. AESA	9	9	9	3	3	1	9	9	9	1	1	9	9	9	9	99
AF	Satellite Altitude	800 1200 1500 [km]	9	9	3	9	9	3	9	9	9	9	3	1	1	1	1	85
Z	Constellation Type	8 Walker IDs	0	0	1	9	9	3	0	0	3	9	3	9	9	9	9	73
Ū	Comm. Downlink	Relay vs. Downlink	0	0	0	0	0	9	0	0	0	0	9	9	9	3	9	48
ES	Tactical Downlink	Yes vs. No	0	0	0	0	3	9	0	0	0	0	9	9	9	3	9	51
Ы	Processing	Space vs. Ground	0	0	0	1	0	3	1	0	0	0	3	9	9	9	9	44
	Maneuver Package	1x, 2x, 4x	1	1	1	1	1	0	1	1	1	1	0	9	3	3	3	27
	Tugable	Yes vs. No	1	1	1	1	1	0	1	1	1	1	0	9	9	9	9	45
	Constellation Option	none, long-lead, spare	0	0	0	0	0	0	0	0	0	0	0	9	9	9	9	36
	Total		65	64	42	39	30	33	66	58	62	23	33	106	100	88	100	

Systems Engineering Advancement Research Initiative

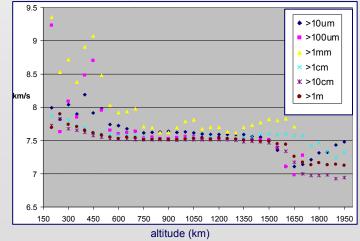
RI

Systems Engineering Advancement Research Initiative Phase 3: Characterize Disturbance Environment

Enumerate disturbances


- Orbital debris
- Signal attenuation

Gather data on disturbance magnitude and occurrence


- NASA ORDEM2000 debris model
 - Space Surveillance Network
 - Haystack and Haystack radar data
 - Goldstone radar data
 - Long-Duration Exposure Facility
 - Hubble Telescope array impact data
 - Space Shuttle impact data
 - Mir impact data

Develop system-independent models of disturbance environment

Spatial Density Debris Spatial Density (800 km circular, i=42.6°)

Average Orbital Velocity

heric drag fluctuations

in target characteristics

eteorites / debris

attenuation

x radiation

charging

actical ground node

of relay backbone

Survivability Variable Mapping Matrix establishes traceability between <u>environment</u> and <u>design-space</u>

	design principles	concept enhancements	design variables (units)	atmospł	arc disc	high-flu	microme	signal a	change	failure o	loss of t
	prevention	reduce exposed s/c area	antenna area (m^2)	9	0	3	9	0	0	0	0
	mobility										
_	concealment										
Type	deterrence										
Σ	preemption										
		s/c maneuvering	ΔV (m/s)	9	0	3	1	0	0	0	0
	avoidance	s/e maneuvering	s/c servicing interface	9	0	1	1	0	0	0	0
		ground receiver maneuverability	mobile receiver	0	0	0	0	3	0	0	3
	hardness	radiation-hardened electronics	hardening (cal/cm ²)	0	3	9	1	0	0	0	0
	naruness	bumper shielding	shield thickness (mm)	0	0	0	9	0	0	0	0
		duplicate critical s/c functions	bus redundancy	0	1	9	3	0	0	0	0
	redundancy	on-orbit satellite spares	extra s/c per orbital plan	0	1	3	3	0	3	0	0
		multiple ground receivers	ground infrastructure level	0	0	0	0	3	0	0	9
		over-design power generation	peak transmit power (kW)	0	0	0	3	9	9	0	0
		over-design link budget	assumed signal loss (dB)	0	0	0	0	9	0	0	0
	margin	over-design propulsion system	ΔV (m/s)	3	0	3	0	3	9	0	0
		excess on-board data storage	s/c data capacity (gbits)	0	0	0	0	0	0	3	3
=		excess constellation capacity	number of satellites	0	1	3	9	0	0	0	0
Type		interface with airborne assets	tactical downlink	3	3	3	3	3	3	3	3
Ĥ	heterogeneity	multiple communication paths	communications downlink	0	0	1	1	9	0	9	3
		multiple communication paths	tactical downlink	0	0	1	1	9	0	9	3
	distribution	spatial separation of spacecraft	orbital altitude (km)	1	1	3	3	0	9	0	0
	distribution	spatial separation of s/c orbits	number of planes	0	0	3	9	0	1	0	1
	failure mode reduction	reduce s/c complexity	bus redundancy	0	0	9	0	0	0	0	0
	fail-safe	autonomous operations	autonomous control	0	0	0	0	3	0	3	3
		flexible sensing operations	antenna type	0	0	0	0	3	9	0	0
	evolution		radar bandwidth (GHz)	0	0	0	0	9	3	0	0
		retraction of s/c appendages	reconfigurable	0	0	9	3	0	0	0	0
	containment	s/c fault monitoring and response	autonomous control	0	1	3	1	0	0	0	0
≡	replacement	rapid reconstitution	constellation spares	0	1	3	9	0	0	0	0
\vdash	repair	on-orbit-servicing	s/c servicing interface	9	1	3	3	0	3	0	0

pheric drag fluctuations

in target characteristics

eteorites / debris

Ittenuation

x radiation

charging

of relay backbone tactical ground node

Survivability Variable Mapping Matrix establishes traceability between <u>environment</u> and <u>design-space</u>

	design principles	concept enhancements	design variables (units)	atmosp	arc disc	high-flu	microm	signal a	change	failure (loss of
	prevention	reduce exposed s/c area	antenna area (m^2)	9	0	3	9	0	0	0	0
	mobility										
	concealment										
l e	deterrence										
Type	preemption										
· ·		s/c maneuvering	ΔV (m/s)	9	0	3	1	0	0	0	0
	avoidance	s/c maneuvering	s/c servicing interface	9	0	1	1	0	0	0	0
		ground receiver maneuverability	mobile receiver	0	0	0	0	3	0	0	3
	hardness	radiation-hardened electronics	hardening (cal/cm^2)	0	3	9	1	0	0	0	0
	naiuness	bumper shielding	shield thickness (mm)	0	0	0	9	0	0	0	0
		duplicate critical s/c functions	bus redundancy	0	1	9	3	0	0	0	0
	redundancy	on-orbit satellite spares	extra s/c per orbital plan	0	1	3	3	0	3	0	0
		multiple ground receivers	ground infrastructure level	0	0	0	0	3	0	0	9
		over-design power generation	peak transmit power (kW)	0	0	0	3	9	9	0	0
		over-design link budget	assumed signal loss (dB)	0	0	0	0	9	0	0	0
	margin	over-design propulsion system	ΔV (m/s)	3	0	З	0	3	9	0	0
		excess on-board data storage	s/c data capacity (gbits)	0	0	0	0	0	0	3	3
=		excess constellation capacity	number of satellites	0	1	3	9	0	0	0	0
Type II		interface with airborne assets	tactical downlink	3	3	3	3	3	3	3	3
Γ	heterogeneity	multiple communication paths	communications downlink	0	0	1	1	9	0	9	3
			tactical downlink	0	0	1	1	9	0	9	3
	distribution	spatial separation of spacecraft	orbital altitude (km)	1	1	3	3	0	9	0	0
		spatial separation of s/c orbits	number of planes	0	0	3	9	0	1	0	1
	failure mode reduction	reduce s/c complexity	bus redundancy	0	0	9	0	0	0	0	0
	fail-safe	autonomous operations	autonomous control	0	0	0	0	3	0	3	3
		flexible sensing operations	antenna type	0	0	0	0	3	9	0	0
	evolution	•	radar bandwidth (GHz)	0	0	0	0	9	3	0	0
		retraction of s/c appendages	reconfigurable	0	0	9	3	0	0	0	0
	containment	s/c fault monitoring and response	autonomous control	0	1	3	1	0	0	0	0
≡	replacement	rapid reconstitution	constellation spares	0	1	3	9	0	0	0	0
\vdash	repair	on-orbit-servicing	s/c servicing interface	9	1	3	3	0	3	0	0

pheric drag fluctuations

in target characteristics

eteorites / debris

ttenuation

x radiation

charging

of relay backbone tactical ground node

Survivability Variable Mapping Matrix establishes traceability between <u>environment</u> and <u>design-space</u>

	design principles	concept enhancements	design variables (units)	atmosp	arc dise	high-flu	micron	signal a	change	failure	loss of
	prevention	reduce exposed s/c area	antenna area (m^2)	9	0	3	9	0	0	0	0
	mobility										
_	concealment										
e	deterrence										
Type	preemption										
l .		s/c maneuvering	ΔV (m/s)	9	0	3	1	0	0	0	0
	avoidance	s/c maneuvering	s/c servicing interface	9	0	1	1	0	0	0	0
		ground receiver maneuverability	mobile receiver	0	0	0	0	3	0	0	3
	hardness	radiation-hardened electronics	hardening (cal/cm^2)	0	3	9	1	0	0	0	0
	naiuness	bumper shielding	shield thickness (mm)	0	0	0	9	0	0	0	0
		duplicate critical s/c functions	bus redundancy	0	1	9	3	0	0	0	0
	redundancy	on-orbit satellite spares	extra s/c per orbital plan	0	1	3	3	0	3	0	0
		multiple ground receivers	ground infrastructure level	0	0	0	0	3	0	0	9
		over-design power generation	peak transmit power (kW)	0	0	0	3	9	9	0	0
		over-design link budget	assumed signal loss (dB)	0	0	0	0	9	0	0	0
	margin	over-design propulsion system	ΔV (m/s)	3	0	3	0	3	9	0	0
		excess on-board data storage	s/c data capacity (gbits)	0	0	0	0	0	0	3	3
=		excess constellation capacity	number of satellites	0	1	3	9	0	0	0	0
Type II		interface with airborne assets	tactical downlink	3	3	3	3	3	3	3	3
ŕ	heterogeneity	multiple communication paths	communications downlink	0	0	1	1	9	0	9	3
		multiple communication paths	tactical downlink	0	0	1	1	9	0	9	3
	distribution	spatial separation of spacecraft	orbital altitude (km)	1	1	3	3	0	9	0	0
	uistribution	spatial separation of s/c orbits	number of planes	0	0	3	9	0	1	0	1
	failure mode reduction	reduce s/c complexity	bus redundancy	0	0	9	0	0	0	0	0
	fail-safe	autonomous operations	autonomous control	0	0	0	0	3	0	3	3
		flexible sensing operations	antenna type	0	0	0	0	3	9	0	0
	evolution	liexible sensing operations	radar bandwidth (GHz)	0	0	0	0	9	3	0	0
		retraction of s/c appendages	reconfigurable	0	0	9	3	0	0	0	0
	containment	s/c fault monitoring and response	autonomous control	0	1	3	1	0	0	0	0
Ξ	replacement	rapid reconstitution	constellation spares	0	1	3	9	0	0	0	0
\vdash	repair	on-orbit-servicing	s/c servicing interface	9	1	3	3	0	3	0	0

finalized	design	vector
(r	n = 3888	

Orbit Altitude (km)	
800	
1500	

Peak Transmit Power (kW)
1.5
10
20

Walker ID
5/5/1
9/3/2
27/3/1
66/6/5

Radar Bandwidth (MHz)
500
1000
2000

Antenna Area (m^2)	
10	
40	
100	

Comm. Architecture	
Direct Downlink Only	
Relay Backbone	

oheric drag fluctuations

Survivability Variable Mapping Matrix establishes traceability between <u>environment</u> and <u>design-space</u>

L	design principles	concept enhancements	design variables (units)	atmosl	arc dis	high-flı	micron	signal	change	failure	loss of
	prevention	reduce exposed s/c area	antenna area (m^2)	9	0	3	9	0	0	0	0
	mobility										
_	concealment										
e	deterrence										
Type	preemption										
'	avoidance		ΔV (m/s)	9	0	3	1	0	0	0	0
		s/c maneuvering	s/c servicing interface	9	0	1	1	0	0	0	0
		ground receiver maneuverability	mobile receiver	0	0	0	0	3	0	0	3
	h a rd a a a	radiation-hardened electronics	hardening (cal/cm ²)	0	3	9	1	0	0	0	0
	hardness	bumper shielding	shield thickness (mm)	0	0	0	9	0	0	0	0
		duplicate critical s/c functions	bus redundancy	0	1	9	3	0	0	0	0
	redundancy	on-orbit satellite spares	extra s/c per orbital plan	0	1	3	3	0	3	0	0
	· · · · · · · · · · · · · · · · · · ·	multiple ground receivers	ground infrastructure level	0	0	0	0	3	0	0	9
	margin	over-design power generation	peak transmit power (kW)	0	0	0	3	9	9	0	0
		over-design link budget	assumed signal loss (dB)	0	0	0	0	9	0	0	0
		over-design propulsion system	$\Delta V (m/s)$	3	0	3	0	3	9	0	0
		excess on-board data storage	s/c data capacity (gbits)	0	0	0	0	0	0	3	3
=		excess constellation capacity	number of satellites	0	1	3	9	0	0	0	0
Type		interface with airborne assets	tactical downlink	3	3	3	3	3	3	3	3
Ţ	heterogeneity		communications downlink	0	0	1		9	0	9	3
	ö ,	multiple communication paths	tactical downlink	0	0	1		9	0	9	3
	distribution	spatial separation of spacecraft	orbital altitude (km)	1	1	3	3	0	9	0	0
		spatial separation of s/c orbits	number of planes	0	0	3	9	0	1	0	1
	failure mode reduction	reduce s/c complexity	bus redundancy	0	0	9	0	0	0	0	0
	fail-safe	autonomous operations	autonomous control	0	0	0	0	3	0	3	3
			antenna type	0	0	0	0	3	9	0	0
	evolution	flexible sensing operations	radar bandwidth (GHz)	0	0	0	0	9	3	0	0
		retraction of s/c appendages	reconfigurable	0	0	9	3	0	0	0	0
	containment	s/c fault monitoring and response	autonomous control	0	1	3	1	0	0	0	0
≡	replacement	rapid reconstitution	constellation spares	0	1	3	9	0	0	0	0
Ē	repair	on-orbit-servicing	s/c servicing interface	9	1	3	3	0	3	0	0

0	<u>finalized design vector</u> (n=3888)
ode	Orbit Altitude (km)
р р	800
n	1500
loss of tactical ground node	
$\overline{\alpha}$	Peak Transmit Power (kW)
Ę	1.5
ta	10
ð	20
SSC	
Ō	Walker ID
	5/5/1
	9/3/2
	27/3/1

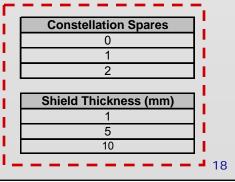
e in target characteristics

neteorites / debris

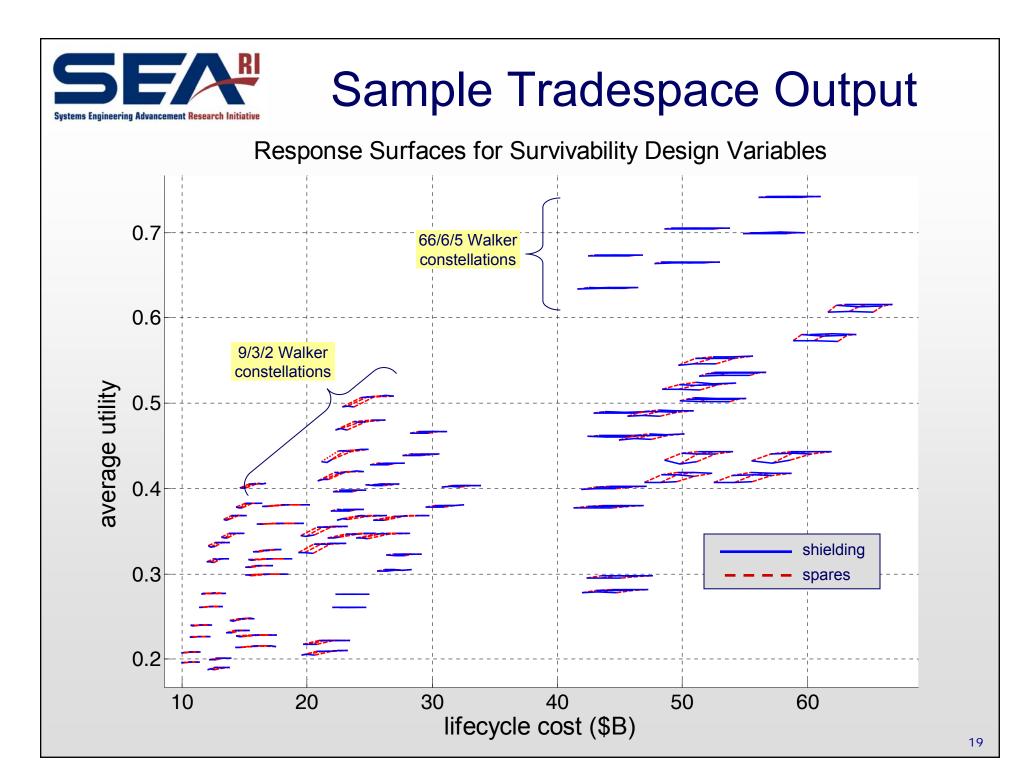
attenuation

ux radiation

scharging


of relay backbone

Radar Bandwidth (MHz)	
500	
1000	
2000	

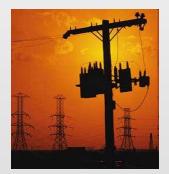

66/6/5

Antenna Area (m^2)	
10	
40	
100	

Comm. Architecture	
Direct Downlink Only	
Relay Backbone	

survivability variables

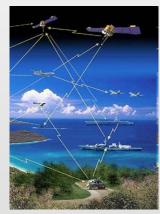
Synthesis



- Survivability definition provides a *solution-generating* and *decision-making* framework, enabling discovery of systems robust to finite-duration disturbances
- Design principles reveal latent survivability trades in baseline design vector
- Design principles inform selection of additive survivability design variables
- Uniting tradespace exploration with survivability analysis generates knowledge that may ultimately lead to better design decisions
- Importance of survivability will grow as critical infrastructures become increasingly large-scale, long-lived, and interdependent

Future Work

- Methodological improvements
 - Parameterize concept-of-operations in design vector
 - Extend scope for systems-of-systems (SoS) engineering
- Apply MATE for Survivability to additional systems for prescriptive insights


power distribution

transportation

water distribution

communications

