Design for Affordability in Complex Systems and Programs Using Tradespace-based Affordability Analysis*

Adam M. Ross, Ph.D.
Engineering Systems Division,
Massachusetts Institute of Technology

May 20, 2014

*This talk is based on one given by Marcus Wu, Adam Ross, and Donna Rhodes at the Conference on Systems Engineering Research, Redondo Beach, CA, March 2014.
Systems Engineering Advancement Research Initiative

SEArI is positioned within the MIT Engineering Systems Division and the MIT SSRC

Mission:
Advance the theories, methods, and effective practice of systems engineering applied to complex socio-technical systems through collaborative research

Current/Past Sponsors:

Past Performance
• More than decade of research in value-driven design and tradespace exploration
• Successful research across multi-year projects
• Numerous publications and courses

Leadership
• Dr. Donna Rhodes
 • Director, Principal Investigator
• Dr. Adam Ross
 • Lead Research Scientist
• Prof. Daniel Hastings
 • Faculty Strategic Advisor

Technical Team
• 8 Graduate Research Assistants
• 4 Affiliated Graduate Students
• 6 Undergraduate Students
• 3 Affiliated Researchers
SEArri Research Seeks to “Change the Picture”

ESSENTIAL ELEMENTS

- Appropriate **competencies** in workforce
- Advanced **methods** for anticipatory analysis, decision making, and architecting
- Enabling enterprise strategies and model-based **environments**
Building Anticipatory Capacity

<table>
<thead>
<tr>
<th>COMPETENCIES</th>
<th>METHODS</th>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to think deeply about ‘systems in context’</td>
<td>Perform dynamic tradespace exploration</td>
<td>Computing power/toolsets to enact methods</td>
</tr>
<tr>
<td>Enhance ability to think about ‘systems in time’</td>
<td>Model-based approach to derive alternative futures</td>
<td>Support multi-stakeholder negotiations in tradespace exploration</td>
</tr>
<tr>
<td>Use situational leadership to make decisions at multiple system levels</td>
<td>Apply methods at varying levels of fidelity</td>
<td>Enable comprehension of complex data sets</td>
</tr>
</tbody>
</table>

Agenda

- Motivation
- Defining Affordability as an Ability
- Affordability Analysis using Tradespace-based Methods
- Space Tug Case Study
- Results of Single Epoch, Multi-Epoch and Single Era Analysis
- Conclusion & Future Work
Motivation

• The architecting of complex systems and programs faces much uncertainty
 – Massive cost overruns, schedule delays, failures to anticipate future requirements and ultimately unrealized capabilities (Cordesman and Frederiksen, 2006)
 – Weaknesses in initial program definition and costing (IDA, 2009)

• Leads to rising costs and schedule slippages

F-35 Joint Strike Fighter and Ballistic Missile Defense System
Motivation

- **DESIGN FOR AFFORDABILITY**
 - Account for performance, cost and schedule parameters

- **Affordability mandated as a requirement** at all milestone decision points of program development (Carter, 2010a, 2010b)

- Affordability has emerged as a high priority concept in systems engineering (SE) that directs early stage design process towards greater cost effectiveness and schedule effectiveness

(Tuttle and Bobinis, 2012)
The Affordability Paradigm

- Carter 2010 Memorandum and Better Buying Power Initiative – “Mandate Affordability as a Requirement” for defense acquisition
- Many tools and frameworks have been proposed to integrate affordability analysis with existing SE methods
The Affordability Paradigm

- Current processes have been limited to static tradeoffs of systems with performance and costs in current operating environments, or in single point futures
- Lack of consensual definition and guiding principles for affordability analysis in the SE community
- Failure to explicitly capture dynamic aspects of system or program and its changing environment over its lifecycle
- Need to have a complementary set of constructs and methods for enabling the affordability paradigm
Affordability as an Ility

• Consider **affordability as an ility**, which is a system property that manifests and determines values after a system is put into initial use (de Weck, Ross and Rhodes 2012)

• Affordability can be treated as an ility that drives the design of more affordable yet technically sound architectures

• It emerges at the nexus of decisions within changing contexts (i.e. what is “right” decision over time?)

• This suggests *tradespace exploration* methods would provide insights in the search for affordable designs

Affordability is the property of becoming or remaining feasible relative to resource needs and resource constraints

(Wu, Ross and Rhodes 2013)
Affordability as an Ility

Affordability is the property of becoming or remaining feasible relative to resource needs and resource constraints

- **Resource needs**: Set of resource requirements elicited from stakeholders (tend toward zero, but some preferences w.r.t. more)
- **Resource constraints**: Statements of restrictions on these requirements that limit range of feasible solutions, externally imposed
- **Goal of Affordability Analysis**: Identify solutions that remain feasible throughout or for a large part of the system lifecycle

(Wu, Ross and Rhodes 2013)
Tradespace-based Methods

- Affordability analysis can be conducted using *tradespace exploration* (TSE)

 - TSE (Ross and Hastings 2005):
 - Model-based investigation of many design alternatives
 - Avoiding premature fixation on point designs and narrow requirements

- EEA (Ross and Rhodes 2008):
 - Model-based investigation of many alternative futures
 - Promotes exploration of impact of short run and long run uncertainties on system/program success
Methodology for Affordability Analysis

1. Use Multi-Attribute Tradespace Exploration (MATE)

2. Use Multi-Attribute Expense (MAE) function instead of “cost”

3. Use constraint levels to determine affordable solution region

4. Select preferred designs from region

5. Use Epoch-Era Analysis (EEA) to account for the evolution of preferred design(s) over time
Multi-Attribute Tradespace Exploration data flow for affordability analysis
(Wu, Ross and Rhodes 2013)
MAE for Affordability

- **Use Multi-Attribute Expense (MAE) instead of “cost” in TSE**
- Break down “cost” into “different colors of money”
- MAE is similar to MAU function by (Keeney and Raiffa 1993)
- A dimensionless, non-ratio scale metric

\[KE(X) + 1 = \prod_{i=1}^{N} [Kk_iE_i(X_i) + 1] \] \hspace{1cm} (Diller 2002)

- Quantified on a 0 to 1 scale:
 - 0: Minimal dissatisfaction
 - 1: Complete dissatisfaction
- **Modify MATE to compare MAE against MAU for affordability analysis**
Constraint Levels

- Constraint levels reflect external constraints that are imposed on stakeholders
- Establish constraint levels for minimum utility and maximum expense
- Find derived minimum expected expense
- Area bounded by three constraint levels is the affordable solution region

Defining the affordable solution space using external constraint levels for a fixed context (Wu, Ross and Rhodes 2013)
Methods are scalable to various layers of application
EEA for Affordability

- EEA discretizes system lifecycle into **epochs** (time periods with fixed context and needs) and **eras** (ordered sequence of epochs)
- Consists of single epoch, multi-epoch, and single era analyses
- Permits **resource-centric approach** for evaluating system design concepts

(a) Original Epoch-Era Analysis Diagram by Ross and Rhodes 2008; (b) Modified Epoch-Era Analysis diagram for Affordability Analysis (Wu, Ross and Rhodes 2013)
Summary of Method

- Use **MATE**
- Use **MAE** instead of cost
- Construct tradespaces bounded by MAU and MAE
- Establish **constraint levels** in tradespaces
- Determine **affordable solution region**
- Select preferred designs from region
- Apply **EEA** to allow for structured evaluation of design alternatives across many alternative futures
- Complete affordability analysis by ensuring that a potential design’s cost, schedule and performance parameters are feasible across the entire lifecycle
Application to Space Tug

- **Space Tug**: a single general-purpose space transportation vehicle designed to transfer space systems between orbits
- **Why Space Tug?** A simple case study that has been validated and used for concept evaluations in many MIT SEAriri theses and publications
- **Conduct a** **System and Program** level analysis
System Level Analysis

- System design variables

<table>
<thead>
<tr>
<th>Manipulator Capability</th>
<th>Propulsion Type</th>
<th>Propellant Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Storable Bipropellant</td>
<td>30</td>
</tr>
<tr>
<td>Medium</td>
<td>Cryogenic</td>
<td>100</td>
</tr>
<tr>
<td>High</td>
<td>Electric</td>
<td>300</td>
</tr>
<tr>
<td>Extreme</td>
<td>Nuclear</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30000</td>
</tr>
</tbody>
</table>

Total of 4 x 4 x 8 = 128 possible designs
System Level Analysis

- **System Attributes**

<table>
<thead>
<tr>
<th>Mass Capability</th>
<th>Transfer Speed</th>
<th>Delta-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>A function of manipulator capability</td>
<td>A function of propulsion type</td>
<td>A function of propulsion type which affects I_{SP}</td>
</tr>
<tr>
<td>Contributes to overall dry mass</td>
<td>Simply defined with only 2 levels: “Slow” (Level 0) or “Fast” (Level 1)</td>
<td>A function of wet mass which is determined by the amount of propellant</td>
</tr>
</tbody>
</table>

- **MAU calculated as the weighted sum of the above 3 attributes.**
System Level Analysis

• Consider “Development Cost”, “Launch Cost” and “Development Schedule” as Expense Attributes

• Development Cost is calculated as a function of dry mass: Wertz and Larson (2011) estimates $475/kg for development cost of small satellites in FY2010 dollars.

• Baseline development schedule of 4, 8, 12, 18 months corresponding to Low, Medium, High, Extreme Capabilities

• Multiplicative factors between \(x1.5\) to \(x3.5\) used for schedule in developing Storable Bi, Cryo, Electric and Nuclear Propulsion types
Defining Epochs and Eras

• New Epoch variable of Technology Level: Present or Future

• Future technology gives higher I_{SP}, lower schedule, higher wet mass launch cost and higher dry mass development cost

• Space Tug to perform 8 different missions:
 – 8 different epochs with 8 different SAU functions for each of the 5 performance attributes and 8 different SAE for each of the 3 expenses

• 1st era: 8 different epochs with Present technology

• 2nd era: 8 different epochs with Future Technology
System Level Analysis

Epoch 1 “Present”

Epoch 1 “Present”

Epoch 2 “Present”

Epoch 2 “Present”

Epoch 5 “Present”

Epoch 6 “Present”

Epoch 6 “Present”
Hypothetical Problem: Due to exogenous disturbances such as solar flares and incoming asteroid debris, many American satellites in Earth orbit have been misaligned from their original orbits. More than 1 pair of misaligned satellites may collide into each other in the following 5 years even after the quickest launch time possible for a Space Tug. A single Space Tug will not be capable of realigning all satellites without incurring any risk of collisions. NASA needs to find a quick, effective but affordable solution to realign these satellites in order to prevent any collision and increase in orbital debris.

Proposed Solution:

Commence on a Space Tug program to develop 2 Space Tugs!
Program Level Analysis

Modified MATE Flow Chart

- Determine Key Decision Makers
- Scope and Bound the Mission
- Elicit Attributes and Expenses
 - Determine Utilities
- Define Design Vector Elements
 - Include Fixing Constants Vector
- Develop Model(s) to link Design, Attributes and Expenses
 - Includes Cost Modeling
- Generate the Tradespace
- Tradespace Exploration
Program Level Analysis

The same 3 Expense Attributes (EA) Redefined, Introduced 5 New Performance Attributes (PA) to give a total of 8 program attributes

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EA-1) Program Development Cost</td>
<td>Sum of development cost of individual Space Tugs</td>
</tr>
<tr>
<td>(EA-2) Program Launch Cost</td>
<td>Sum of launch costs of individual Space Tugs if in different orbits, else 2/3 of the value</td>
</tr>
<tr>
<td>(EA-3) Program Schedule</td>
<td>Maximum of the schedules of the two Space Tugs if launched to the same orbits, else the minimum</td>
</tr>
<tr>
<td>(PA-1) Program Mass Capability</td>
<td>The lower of the 2 Space Tugs in order to guarantee that the other one has higher delta-V</td>
</tr>
<tr>
<td>(PA-2) Program Delta-V</td>
<td>The lower of the 2 Space Tugs in order to guarantee that the other one has higher delta-V</td>
</tr>
<tr>
<td>(PA-3) Program Transfer Speed</td>
<td>Sum of Speed levels - “Slow-Slow” (Level 0), “Slow-Fast”/”Fast-Slow” (Level 1), “Fast-Fast” (Level 2)</td>
</tr>
<tr>
<td>(PA-4) Probability of Success</td>
<td>Probability of 2 Space Tugs being able to perform their missions at the same time</td>
</tr>
<tr>
<td>(PA-5) Mission Time</td>
<td>Duration taken to prevent the first predicted collision or multiple collisions predicted to occur at the same time</td>
</tr>
</tbody>
</table>
Program Level Analysis

- **MAU** = \(f \{ PA-1, PA-2, PA-3, PA-4, PA-5 \} \)
- **MAE** = \(f \{ EA-1, EA-2, EA-3 \} \)
- **128 designs x 128 designs x 4 orbit location pairs x 4 reliability level pairs = 262,144 program design solutions**
- Space Tug program to perform 8 different missions:
 - 8 different epochs with 8 different SAU functions for each of the 5 attributes and 8 different SAE for each of the 3 expenses
- **1st era:** 8 different epochs with **Present** technology
- **2nd era:** 8 different epochs with **Future** Technology
Single-Epoch Analysis

- Generate tradespace for Epoch 1
- 6 designs along the Pareto front were chosen and labeled A to F.
- Constraint levels are set using Design A as reference.
- Maximum Expense is arbitrarily set at 1.5-2.0x above its resource expenditure and Minimum Utility is set at 1.5-2.0x below its utility
- Designs A, B, C are affordable

Tradespace for a Space Tug program in Epoch 1. (Wu, Ross and Rhodes 2013)
Single-Epoch Analysis

Characteristics of Designs A to F

<table>
<thead>
<tr>
<th>Design (Number)</th>
<th>Program Payload (kg)</th>
<th>Program Speed</th>
<th>Program Delta-V (ms⁻¹)</th>
<th>Prob. Success</th>
<th>Mission Time</th>
<th>PDC ($mil)</th>
<th>PLC ($mil)</th>
<th>PDS (mths)</th>
<th>Utility</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (26836)</td>
<td>300</td>
<td>Fast/Fast</td>
<td>6147</td>
<td>0.96</td>
<td>Short</td>
<td>940.5</td>
<td>376.8</td>
<td>8</td>
<td>0.715</td>
<td>0.131</td>
</tr>
<tr>
<td>B (28900)</td>
<td>300</td>
<td>Fast/Fast</td>
<td>8091</td>
<td>0.96</td>
<td>Short</td>
<td>1805</td>
<td>808</td>
<td>8</td>
<td>0.774</td>
<td>0.208</td>
</tr>
<tr>
<td>C (59860)</td>
<td>300</td>
<td>Fast/Fast</td>
<td>12645</td>
<td>0.92</td>
<td>Short</td>
<td>2090</td>
<td>764</td>
<td>14</td>
<td>0.800</td>
<td>0.254</td>
</tr>
<tr>
<td>D (125908)</td>
<td>1000</td>
<td>Fast/Fast</td>
<td>8910</td>
<td>0.88</td>
<td>Short</td>
<td>3420</td>
<td>1212</td>
<td>28</td>
<td>0.823</td>
<td>0.448</td>
</tr>
<tr>
<td>E (127972)</td>
<td>1000</td>
<td>Fast/Fast</td>
<td>16150</td>
<td>0.88</td>
<td>Short</td>
<td>4750</td>
<td>1800</td>
<td>28</td>
<td>0.840</td>
<td>0.517</td>
</tr>
<tr>
<td>F (194020)</td>
<td>3000</td>
<td>Fast/Fast</td>
<td>10984</td>
<td>0.86</td>
<td>Short</td>
<td>8550</td>
<td>3080</td>
<td>42</td>
<td>0.915</td>
<td>0.763</td>
</tr>
</tbody>
</table>

Performance and Resource Attributes for Designs A to F in Epoch 1 (Wu, Ross and Rhodes 2013)
Multi-Epoch Analysis

- To find out how utility and expense of program changes across multiple epochs
- Find out how many epochs during which designs remain affordable
- Epochs 1, 5, 6, 13, 14 chosen
- Varying constraint levels were chosen for each epoch to yield different affordable solution regions

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Program Payload (kg)</th>
<th>Program Speed</th>
<th>Program Delta-V (ms⁻¹)</th>
<th>Prob. Success</th>
<th>Mission Time</th>
<th>PDC ($mil)</th>
<th>PLC ($mil)</th>
<th>PDS (mths)</th>
<th>Minimum Utility</th>
<th>Derived Minimum Expense</th>
<th>Maximum Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>Fast/Fast</td>
<td>5500</td>
<td>0.95</td>
<td>Short</td>
<td>2000</td>
<td>500</td>
<td>12</td>
<td>0.605</td>
<td>0.087</td>
<td>0.294</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>Fast/Fast</td>
<td>7000</td>
<td>0.90</td>
<td>Short</td>
<td>3000</td>
<td>900</td>
<td>12</td>
<td>0.661</td>
<td>0.178</td>
<td>0.349</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>Fast/Fast</td>
<td>4000</td>
<td>0.90</td>
<td>Short</td>
<td>4000</td>
<td>1000</td>
<td>12</td>
<td>0.576</td>
<td>0.293</td>
<td>0.389</td>
</tr>
<tr>
<td>13</td>
<td>300</td>
<td>Fast/Fast</td>
<td>6500</td>
<td>0.95</td>
<td>Short</td>
<td>5000</td>
<td>1200</td>
<td>24</td>
<td>0.643</td>
<td>0.079</td>
<td>0.583</td>
</tr>
<tr>
<td>14</td>
<td>1000</td>
<td>Fast/Fast</td>
<td>7000</td>
<td>0.90</td>
<td>Short</td>
<td>3000</td>
<td>1600</td>
<td>24</td>
<td>0.681</td>
<td>0.175</td>
<td>0.527</td>
</tr>
</tbody>
</table>

Performance and Resource Constraints for a Set of Epochs (sequenced as an Era) (Epochs 1,5,6,13,14) (Wu, Ross and Rhodes 2013)
Multi-Epoch Analysis

(a) Number of epochs in affordable solution region for every design
(b) Number of epochs above minimum utility level for every design

(Wu, Ross and Rhodes 2013)
Single-Era Analysis

Plot both expense and utility trajectories of designs over defined era

(a) EEA with expense considerations in a single era (b) EEA with utility considerations in a single era

(Wu, Ross and Rhodes 2013)
Single-Era Analysis

• Combining results from both utility and expense trajectories, **Design C** has the best tradeoffs among performance, cost and schedule attributes.

• Both Space Tugs have ‘Low’ mass capability, use ‘Nuclear’ propulsion, propellant mass of **3000kg**, in **LEO-LEO** orbit configuration, **high reliability**, and are carried on the **same launch vehicle**.

• The PDC is **$2.09 billion**, PLC is **$0.764 billion**, and development schedule is at least **14 months**.

<table>
<thead>
<tr>
<th>Design (Number)</th>
<th>Program Payload (kg)</th>
<th>Program Speed</th>
<th>Program Delta-V (ms(^{-1}))</th>
<th>Prob. Success</th>
<th>Mission Time</th>
<th>PDC ($mil)</th>
<th>PLC ($mil)</th>
<th>PDS (mths)</th>
<th>Utility</th>
<th>Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (26836)</td>
<td>300</td>
<td>Fast/Fast</td>
<td>6147</td>
<td>0.96</td>
<td>Short</td>
<td>940.5</td>
<td>376.8</td>
<td>8</td>
<td>0.715</td>
<td>0.131</td>
</tr>
<tr>
<td>B (28900)</td>
<td>300</td>
<td>Fast/Fast</td>
<td>8091</td>
<td>0.96</td>
<td>Short</td>
<td>1805</td>
<td>808</td>
<td>8</td>
<td>0.774</td>
<td>0.208</td>
</tr>
<tr>
<td>C (59860)</td>
<td>300</td>
<td>Fast/Fast</td>
<td>12645</td>
<td>0.92</td>
<td>Short</td>
<td>2090</td>
<td>764</td>
<td>14</td>
<td>0.800</td>
<td>0.254</td>
</tr>
<tr>
<td>D (125908)</td>
<td>1000</td>
<td>Fast/Fast</td>
<td>8910</td>
<td>0.88</td>
<td>Short</td>
<td>3420</td>
<td>1212</td>
<td>28</td>
<td>0.823</td>
<td>0.448</td>
</tr>
<tr>
<td>E (127972)</td>
<td>1000</td>
<td>Fast/Fast</td>
<td>16150</td>
<td>0.88</td>
<td>Short</td>
<td>4750</td>
<td>1800</td>
<td>28</td>
<td>0.840</td>
<td>0.517</td>
</tr>
<tr>
<td>F (194020)</td>
<td>3000</td>
<td>Fast/Fast</td>
<td>10984</td>
<td>0.86</td>
<td>Short</td>
<td>8550</td>
<td>3080</td>
<td>42</td>
<td>0.915</td>
<td>0.763</td>
</tr>
</tbody>
</table>
Conclusion & Future Work

• Defined affordability as an ability
• Introduced tradespace-based methods to conduct affordability analysis
 – Methods are scalable from systems to programs to portfolios
• Demonstrated methods on system and program levels for Space Tug
• Further examples and details can be found in:

MATE, EEA and MAE can be used in the design for affordability to avoid cost overruns and schedule slippages in the long run
THANK YOU VERY MUCH!
ANY QUESTIONS?

Contact: adamross@mit.edu or marcuswu@mit.edu

Design For Affordability In Complex Systems And Programs Using Tradespace-based Affordability Analysis

Marcus S. Wu, Adam M. Ross, Donna H. Rhodes
Systems Engineering Advancement Research Initiative
Massachusetts Institute Of Technology
References