SEArí Short Course Series

Course: PI.27s Value-driven Tradespace Exploration for System Design

Lecture: Lecture 10: Development of a Tradespace Exploration Laboratory

Author: Adam Ross and Donna Rhodes

Lecture Number: SC-2010-PI27s-10-1

Revision Date: July 24, 2010

This course was taught at PI.27s as a part of the MIT Professional Education Short Programs in July 2010 in Cambridge, MA. The lectures are provided to satisfy demand for learning more about Multi-Attribute Tradespace Exploration, Epoch-Era Analysis, and related SEArí-generated methods. The course is intended for self-study only. The materials are provided without instructor support, exercises or “course notebook” contents. Do not separate this cover sheet from the accompanying lecture pages. The copyright of the short course is retained by the Massachusetts Institute of Technology. Reproduction, reuse, and distribution of the course materials are not permitted without permission.
Lecture 10
Development of a Tradespace Exploration Laboratory

Dr. Donna H. Rhodes
rhodes@mit.edu

Dr. Adam M. Ross
adamross@mit.edu

Massachusetts Institute of Technology
Outline

- Tradespace representations
- Dimensionality of data
- Tradespace exploration facility
- Users, views, and widgets
- Example application
Tradespace Exploration (TSE)

A method for understanding complex solutions to complex problems

- Model-based, high-level assessment of system capabilities
- Ideally, *many* designs assessed
- Avoids optimized *point solutions* that will not support evolution in environment or user needs
- Provides a basis to explore technical and policy *uncertainties*
- Provides a way to assess the value of *potential* capabilities

Allows informed “upfront” decisions and planning
Tradespace Exploration Paradigm: Avoiding Point Designs

Differing types of “trades”

0. Choose a solution
1. Local point solution trades
2. Multiple points with trades
3. Frontier solution set
4. Full tradespace exploration

\[\text{Design}_i = \{X_1, X_2, X_3, \ldots, X_j\} \]

Tradespace exploration enables big picture understanding
Value-Driven Tradespace Exploration

Compares many designs on a common, quantitative basis
- Maps structure of design space onto stakeholder value (attributes)
- Uses computer-based models to assess thousands of designs, avoiding limits of local point solutions
- Simulation can be used to account for design uncertainties (e.g., cost, schedule, performance uncertainty)

Typical goal: maximize aggregate benefit (utility) and minimize aggregate cost (lifecycle cost)

Value-based assessments allow for comparison of many different alternatives
Steps for Tradespace Exploration

- Determine Key Decision Makers
- Scope and Bound the Mission
- Elicit Attributes
 - Determine Utilities
- Define Design Vector Elements
 - Includes Fixing Constants Vector
- Develop Model(s) to link Design and Attributes
 - Includes Cost Modeling
- Generate the Tradespace
- Tradespace Exploration

Decision Makers → Mission Concept → Attributes

Define Design Vector → Develop System Model

Calculate Utility

Estimate Cost

System Tradespace
Rich data sets can be explored to reveal complex relationships between design-space and value-space for generating intuition into a multi-dimensional analogy to graphing $y = f(x)$.

“Explore” tradespace data to develop intuition into complex design-value relationships.
Example Tradespace Insights

SPACETUG
- General purpose orbit transfer vehicles
- Trades propulsion systems and grappling/observation capabilities

Understanding limiting physical or mission constraints

Understanding differential uncertainty

Comparing alternatives on common basis

Hits “wall” of either physics (can’t change) or utility (can)

Different designs subject to different risks

Common “value” definition can compare old and new heterogeneous systems

Lines show increasing fuel mass fraction

Courses:
- Biprop
- Cryo
- Electric
- Nuclear

Designs from traditional process
Many Important Dimensions

1. Needs (expectations)
2. Context (constraints including resources, technology, etc.)

Era is an ordered set of Epochs

Epoch 63
Epoch 171
Epoch 193
Epoch 202
Epoch 171

2 yrs 4 yrs 1 yr 3 yrs 10 yrs

Utopia Trajectory

Design 3435

How to make sense of important dimensions across multiple trades, multiple perspectives, and multiple time periods?
Key “Dimensions” for TSE

• Information dimensionality
 – Tradespace has many important variables (e.g. attributes, utilities, design variables, intermediate variables, costs, etc.)

• Multi-perspective
 – Each decision maker has own preferences with sensitivities (e.g. single attribute utilities, weights, multi-attribute utilities, etc.)

• Temporal representations
 – All data have time aspect, both short run and long run (e.g. epochs and eras)

• Depth of detail
 – All data have varying degrees of fidelity/depth (e.g. high level tradespace=many designs, point=one system, details on point=subsystem, point in mission=operations, etc.)

Modern tradespace exploration methods seek to effectively incorporate these dimensions to enable better decision making.
Visualization and Communication

• Humans are better at recognition over recall
• According to Tufte (2001)*, graphs should:
 – Show the data
 – Not get in way of message
 – Avoid distortion
 – Present many numbers in a small space
 – Make large data sets coherent
 – Encourage comparison between data
 – Supply both broad overview and fine detail
 – Serve a clear purpose
• Visual displays as domain-independent communication artifact to facilitate learning

Original Concept: A Design Exploration Console

Resources Used

- Money: 6.32×10^6
- Time: 3.25 \times 10^1\text{mos}

Design Variables

- \{DV^N\}
- \{X^M\}

Changeability

- OD_{filt} = 0.732
- OD_{filt} = 0.542

Satisfaction

Attributes

- 0.9424 utils
- 0.6564 utils

New DV

New Att
Example TSE Benefits

The following strengths of TSE were identified by a user of the method:

- Forces alignment of solutions to needs
- Reveals structure of design-value spaces not apparent with few point designs
 - Akin to graphing calculator showing function shapes, tradespaces give insight/intuition into complex design-value space relationships
- Facilitates cross-domain socio-technical conversation
- Ability to discover compromise solutions
 - Beyond “optimized” per stakeholder solutions
 - Experts often unable to find “suboptimal” solution that may be better compromise across stakeholders
- Structured means for considering large array of possible futures for discovering robust systems and strategies

TSE methods (e.g. MATE) highlight and help to focus attention on important trades, possibly overlooked by traditional methods
Future State Vision

A concept of operations for creating, using and sharing tradespace data…

2 Key Types of Decision Makers

• Senior technical leadership could explore in-depth in a specialized multi-sensory environment
 • Personnel with deep technical knowledge and contextual understanding
 • Multi-level and multi-dimensional data (terabytes)
 • Goal is holistic understanding of complex system issues

• Policy and financial decision makers could understand results (in their offices) well enough to make better decisions
 • Intelligent but non-technical personnel
 • Explicit messages (static, or linear “storyline”)
 • Goal is better cost/benefit, go/no-go, or concept selection choices

…to help make better high consequence, high-payoff decisions
Vision for TSE Lab: Summer 2009

- Rapidly facilitate state of practice for TSE
 - Utility-Cost, SAU-Cost, Attribute-Cost
 - Color by design variable
- Database backend to ensure consistency
 - Linked database to generate consistent plots
 - Minimize code re-run
- Linked representations
 - Baseline setting consistent across analyses
 - Depth and breadth (time, multi-DM) linked
- Intuitive multi-sensory interaction
 - “Touch” and “click”
 - “Drag” and “pull”
 - Using mice, keyboards, stylus, and Wii remote
Basic, but flexible multi-surface, multi-input facility
Views and “Widgets”

• Views organized around solving types of questions
• Each view has set of associated “widgets”—modular data “interaction/display” windows
• Widgets can talk to database and can be custom arranged or called up by TSE lab user
• Widgets have level of analysis and level of technical complexity associated with them
 – Help to categorize widgets for appropriate views and users
Three “Types” of Lab Users

• Expert Tradespace Analyst
 – All widgets available by default
 – May tend toward high technical complexity, with both high and low level of analysis

• Senior DM
 – Subset of widgets available by default
 – May tend toward high technical complexity with some low, high and low level of analysis

• Legislative Aid
 – Smallest subset of widgets available by default
 – May tend toward low technical complexity, high level of analysis

Goal: Select “user type” and “question” and lab will pre-select widgets for use (i.e. the “view”)
Select project
- Satellite Radar System
- Space Tug
- other

Select “user type”
- Expert analyst
- Senior decision maker
- Policy maker

All current widgets
- Summary Dash
- Notes
- Favorites
- Pref’s Explorer
- STK Viz*
- Tradespace Plot
- Pareto Tool
- Morph Tool
- Design Transitions**
- Comparison Tool
- Design Explorer
- Era Constructor
- Carpet Plot Tool**

* SRS only
** widget not complete

Note: Widget names and layout are draft
Wrapper

The wrapper is the main control panel for calling widgets

- **Available widgets**
 - Summary Dash
 - Notes
 - Favorites
 - Pref Explorer
 - STK Viz
 - Tradespace Plot
 - Pareto Tool
 - Morph
 - Design Transition
 - Comparison
 - Design Explorer
 - Era Constructor
 - Carpet Plot

- **Session-level commands**
 - Save Session
 - Load Session
 - Change Project
 - Close all Widgets
 - Reset to Baseline

- **Open widgets in current session**

- **Project name**

- **Restore data from database**
 - (“emergency reset”)

- **User “switching”**

The wrapper layout is for demonstration purposes.
The Summary Dash gives overall info on DB, tradespace and epoch-space sizes.

- Num designs per tradespace
- Num epochs (context var enumeration size)
- Num designs across all contexts
- Fraction total designs evaluated in DB

Summary Dash Table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># designs</td>
<td>23328</td>
</tr>
<tr>
<td># epochs</td>
<td>972</td>
</tr>
<tr>
<td>total tradespace size</td>
<td>22674816</td>
</tr>
<tr>
<td># evaluated</td>
<td>22674816</td>
</tr>
<tr>
<td>% evaluated</td>
<td>100</td>
</tr>
<tr>
<td>DB size [MB]</td>
<td>3688.88719437</td>
</tr>
</tbody>
</table>
The Tradespace widget generates a scatter plot from DB for a given epoch.

Features
- Multiple tradespace widgets can be open at the same time to allow side-by-side comparisons.
- Plots updated in real time by changes made in other widgets.

- Plot three dimensions (drop downs from DB).
- "Click on point" capability.
- "Favorites" plotted on tradespace.
- Select current epoch (from Era or other).
- Num valid designs in this epoch.
The Favorites widget allows a set of designs to be tracked and formatted across widgets.

Features

- Single or multiple designs can be grouped as a favorite.
- Each favorite can be consistently displayed and formatted across widgets.

Favorites plotted in other widgets (e.g., "tradespace").

Enter design ID(s).

List of all favorites.

Add text label.

Specify plot formatting for each favorite.
The Preferences widget displays and allows alteration of a decision maker’s preferences.

Features:
- Preferences can be displayed and edited
- Local mode allows local “playing”; global mode propagates to other widgets
- Favorites can be displayed

Select attribute
Shows tradespace with SAUs attribute values
Bars show min acceptable, max desirable attribute levels

Favorites shown
SAU curves
Global and local modes
Tradespace widget updated to reflect new preferences
The Era Constructor displays and allows to be edited the current set of epochs in the era.

Features
- Specify epochs (context and prefs) in current era
- Each epoch context variables and preferences can be reviewed*

*mini pref viewer under development
The Design Explorer widget allows (a) design(s) to be specified or looked up from DB

Features

• Single or multiple designs can be specified if entered as ID(s)
• Single or multiple designs can be looked up if entered as dv values
• Linked to “design selector” in tradespace widget

Enter design ID(s) (or look up ID(s))
Set favorite
Specify design, or have design described

“Click on point” brings up design knobs
Send to comparison tool
The Comparison Tool shows DB info in table for selected designs to compare details

Features

• Shows DB info for designs in tabular form
• Single or multiple designs can be compared
• Simple color coding highlights differences from specified baseline

Send to comparison tool

Set baseline

Color coding quickly shows differences from baseline (green ~ >, red ~ <, gray ~ =)

DB info for “compared” designs
The Pareto Tool widget calculates multi-objective fuzzy pareto sets across single or multiple DMs.

Features

- Up to 3 objectives for one or 2 DMs*
- Can specify fuzzy margin for 2 (or more) DMs
- Can bring up specialized graphical comparison across multiple DMs

* 2 DMs were chosen to demonstrate capability; generalizeable to more DMs, but interface will need to be revised
The Pareto widget graphs single or multiple DM pareto sets, with fuzziness.

Features

- Real time fuzziness control
- Size of pareto set and location in tradespace updated

Call from Pareto Tool

Favorites and pareto displayed

Fuzziness margin can be changed in real-time
The Morph widget animates the transition between two epochs in the era.

Features

- Linear interpolates trajectories of designs across two epochs
- Can customize steps size and speed of animation
- Can step through animation and play backwards

Specify start and end epochs

Specify framecount and frames per second (FPS)

Spot differential "motion" of designs
Example Emergent Insights

Design 3435 is good for track user, but only okay for image user. Design 5380 is better for image user. Where is design 5380 on track user tradespace?

Key

▲ Design 3435
▼ Design 5380

Find offending constraint
Changing Preferences in Real Time

Key
△ Design 3435
▼ Design 5380

Find offending constraint
Relax offending constraint
Discovering Compromises

It turns out this was the least important attribute and perhaps tracking user is willing to relax constraint to find a better cross-mission solution.

Relax constraint, in real time discover good compromise design.

Design is now valid

Key
- Design 3435
- Design 5380
Enabling Environment

Enhancing Anticipatory Capacity

Dynamic tradespace exploration performed by multi-disciplinary teams using model-based environments:

- Physical collaboration venue to bring together relevant stakeholders
- Provides computing power and toolsets need to enact anticipation methods
- Enables effective display of complex data sets and analyses to facilitate communication

Anticipatory capacity of an engineering organization will be enhanced by

Tradespace exploration laboratories for creating models so that dynamic futures can be elaborated and their implications considered